Riemann-hilbert Methods in the Theory of Orthogonal Polynomials
نویسنده
چکیده
In this paper we describe various applications of the RiemannHilbert method to the theory of orthogonal polynomials on the line and on the circle.
منابع مشابه
A Riemann-hilbert Problem for Skew-orthogonal Polynomials
Abstract. We find a local (d + 1)× (d + 1) Riemann-Hilbert problem characterizing the skew-orthogonal polynomials associated to the partition function of the Gaussian Orthogonal Ensemble of random matrices with a potential function of degree d. Our Riemann-Hilbert problem is similar to a local d × d RiemannHilbert problem found by Kuijlaars and McLaughlin characterizing the bi-orthogonal polyno...
متن کاملOrthogonal trigonometric polynomials: Riemann-Hilbert analysis and relations with OPUC
Abstract. In this paper, we study the theory of orthogonal trigonometric polynomials (OTP). We obtain asymptotics of OTP with positive and analytic weight functions by Riemann-Hilbert approach and find they have relations with orthogonal polynomials on the unit circle (OPUC). By the relations and the theory of OPUC, we also get four-terms recurrent formulae, ChristoffelDarboux formula and some ...
متن کاملMultiple orthogonal polynomials of mixed type and non-intersecting Brownian motions
We present a generalization of multiple orthogonal polynomials of type I and type II, which we call multiple orthogonal polynomials of mixed type. Some basic properties are formulated, and a Riemann-Hilbert problem for the multiple orthogonal polynomials of mixed type is given. We derive a Christoffel-Darboux formula for these polynomials using the solution of the Riemann-Hilbert problem. The m...
متن کاملScalar and matrix Riemann-Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight
We describe methods for the derivation of strong asymptotics for the denominator polynomials and the remainder of Padé approximants for a Markov function with a complex and varying weight. Two approaches, both based on a Riemann-Hilbert problem, are presented. The first method uses a scalar Riemann-Hilbert boundary value problem on a two-sheeted Riemann surface, the second approach uses a matri...
متن کاملStrong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory
We consider polynomials orthogonal on [0,∞) with respect to Laguerre-type weights w(x) = xe, where α > −1 and where Q denotes a polynomial with positive leading coefficient. The main purpose of this paper is to determine Plancherel-Rotach type asymptotics in the entire complex plane for the orthonormal polynomials with respect to w, as well as asymptotics of the corresponding recurrence coeffic...
متن کامل